首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1561篇
  免费   171篇
  国内免费   40篇
  2023年   29篇
  2022年   21篇
  2021年   17篇
  2020年   35篇
  2019年   55篇
  2018年   86篇
  2017年   55篇
  2016年   47篇
  2015年   35篇
  2014年   93篇
  2013年   113篇
  2012年   41篇
  2011年   88篇
  2010年   109篇
  2009年   136篇
  2008年   137篇
  2007年   133篇
  2006年   108篇
  2005年   52篇
  2004年   44篇
  2003年   37篇
  2002年   28篇
  2001年   20篇
  2000年   20篇
  1999年   22篇
  1998年   14篇
  1997年   17篇
  1996年   13篇
  1995年   18篇
  1994年   19篇
  1993年   18篇
  1992年   18篇
  1991年   17篇
  1990年   11篇
  1989年   17篇
  1988年   6篇
  1987年   6篇
  1986年   4篇
  1985年   5篇
  1984年   9篇
  1983年   5篇
  1982年   6篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
排序方式: 共有1772条查询结果,搜索用时 15 毫秒
1.
《Chirality》2017,29(5):159-166
Here we review our three recently developed analytical models describing the intraband optical activity of semiconductor nanocrystals, which is induced by screw dislocations, ionic impurities, or irregularities of the nanocrystal surface. The models predict that semiconductor nanocrystals can exhibit strong optical activity upon intraband transitions and have large dissymmetry of magnetic‐dipole absorption. The developed models can be used to interpret experimental circular dichroism spectra of nanocrystals and to advance the existing techniques of enantioseparation, biosensing, and chiral chemistry.  相似文献   
2.
Both G-quadruplex and Z-DNA can be formed in G-rich and repetitive sequences on genome, and their formation and biological functions are controlled by specific proteins. Z-DNA binding proteins, such as human ADAR1, have a highly conserved Z-DNA binding domain having selective affinity to Z-DNA. Here, our study identifies the Z-DNA binding domain of human ADAR1 (hZαADAR1) as a novel G-quadruplex binding protein that recognizes c-myc promoter G-quadruplex formed in NHEIII1 region and represses the gene expression. An electrophoretic migration shift assay shows the binding of hZαADAR1 to the intramolecular c-myc promoter G-quadruplex-forming DNA oligomer. To corroborate the binding of hZαADAR1 to the G-quadruplex, we conducted CD and NMR chemical shift perturbation analyses. CD results indicate that hZαADAR1 stabilizes the parallel-stranded conformation of the c-myc G-quadruplex. The NMR chemical shift perturbation data reveal that the G-quadruplex binding region in hZαADAR1 was almost identical with the Z-DNA binding region. Finally, promoter assay and Western blot analysis show that hZαADAR1 suppresses the c-myc expression promoted by NHEIII1 region containing the G-quadruplex-forming sequence. This finding suggests a novel function of Z-DNA binding protein as a regulator of G-quadruplex-mediated gene expression.  相似文献   
3.
The use of nanoparticles in stem cell research is relatively recent, although very significant in the last 5 years with the publication of about 400 papers. The recent advances in the preparation of some nanomaterials, growing awareness of material science and tissue engineering researchers regarding the potential of stem cells for regenerative medicine, and advances in stem cell biology have contributed towards the boost of this research field in the last few years. Most of the research has been focused in the development of new nanoparticles for stem cell imaging; however, these nanoparticles have several potential applications such as intracellular drug carriers to control stem cell differentiation and biosensors to monitor in real time the intracellular levels of relevant biomolecules/enzymes. This review examines recent advances in the use of nanoparticles for stem cell tracking, differentiation and biosensing. We further discuss their utility and the potential concerns regarding their cytotoxicity. J. Cell. Biochem. 108: 746–752, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
4.
Retinoblastoma-binding protein 1 (RBBP1) is involved in gene regulation, epigenetic regulation, and disease processes. RBBP1 contains five domains with DNA-binding or histone-binding activities, but how RBBP1 specifically recognizes chromatin is still unknown. An AT-rich interaction domain (ARID) in RBBP1 was proposed to be the key region for DNA-binding and gene suppression. Here, we first determined the solution structure of a tandem PWWP-ARID domain mutant of RBBP1 after deletion of a long flexible acidic loop L12 in the ARID domain. NMR titration results indicated that the ARID domain interacts with DNA with no GC- or AT-rich preference. Surprisingly, we found that the loop L12 binds to the DNA-binding region of the ARID domain as a DNA mimic and inhibits DNA binding. The loop L12 can also bind weakly to the Tudor and chromobarrel domains of RBBP1, but binds more strongly to the DNA-binding region of the histone H2A-H2B heterodimer. Furthermore, both the loop L12 and DNA can enhance the binding of the chromobarrel domain to H3K4me3 and H4K20me3. Based on these results, we propose a model of chromatin recognition by RBBP1, which highlights the unexpected multiple key roles of the disordered acidic loop L12 in the specific binding of RBBP1 to chromatin.  相似文献   
5.
A DNA–DNA hybridization method, reverse dot blot analysis (RDBA), was used to identify Anopheles gambiae s.s. and Anopheles arabiensis (Diptera: Culicidae) hosts. Of 299 blood‐fed and semi‐gravid An. gambiae s.l. collected from Kisian, Kenya, 244 individuals were identifiable to species; of these, 69.5% were An. arabiensis and 29.5% were An. gambiae s.s. Host identifications with RDBA were comparable with those of conventional polymerase chain reaction (PCR) followed by direct sequencing of amplicons of the vertebrate mitochondrial cytochrome b gene. Of the 174 amplicon‐producing samples used to compare these two methods, 147 were identifiable by direct sequencing and 139 of these were identifiable by RDBA. Anopheles arabiensis bloodmeals were mostly (94.6%) bovine in origin, whereas An. gambiae s.s. fed upon humans more than 91.8% of the time. Tests by RDBA detected that two of 112 An. arabiensis contained blood from more than one host species, whereas PCR and direct sequencing did not. Recent use of insecticide‐treated bednets in Kisian is likely to have caused the shift in the dominant vector species from An. gambiae s.s. to An. arabiensis. Reverse dot blot analysis provides an opportunity to study changes in host‐feeding by members of the An. gambiae complex in response to the broadening distribution of vector control measures targeting host‐selection behaviours.  相似文献   
6.
7.
Dickson Fenn 《FEBS letters》2008,582(30):4169-4175
Oxidation of guanine in DNA can lead to mutagenic lesions such as 7-hydro-8-oxoguanine (oG). Upon further oxidation, a more mutagenic lesion, spirominodihydantoin (Sp), can occur. In this study, nuclear magnetic resonance (NMR) investigations were performed to determine the structural features of DNA primer-template models with 5′-GG, 5′-G(oG), 5′-G(Sp) and 5′-T(Sp) templates, that mimic the situation in which the downstream G of the template has been oxidized to oG or hyperoxidized to Sp. Our results show that misalignment occurs only in the 5′-G(Sp) and 5′-T(Sp) templates, providing structural insights into the observed differences in mutagenicity of Sp and oG during DNA replication.  相似文献   
8.
Justification of a simple and reliable relativistic procedure for the prediction of a large body of transition probability data is made. The main features of the Relativistic Quantum Defect Orbital (RQDO) formalism are described, and several examples of the data yielded by this method are presented in tabular and graph forms.  相似文献   
9.
《Chirality》2017,29(11):670-676
The absolute configuration (AC) of an axially chiral sulfonate (aCSO), 3,5‐dimethyl‐2‐(naphthalen‐1‐yl)‐6‐(naphthalen‐1‐yl)benzenesulfonate (labeled as aCSO5), was investigated using optical rotatory dispersion (ORD), electronic circular dichroism (ECD), and vibrational circular dichroism (VCD) spectroscopies. All three methods led to the same conclusion and the AC of aCSO5 is reliably determined to be (−)‐(aR , aR ), or conversely (+)‐(aS , aS ).  相似文献   
10.
An explanation of photodamages to PS II at low light intensities is proposed. The explanation is based on the two following postulates: 1. Intermediate states of the water-oxidizing complex can undergo parasitic reduction to lower degrees of oxidation. 2. Photosynthetic apparatus can minimize the unfavorable effect of such reduction by changes in the number of active reaction centers of PS II. Some steady-state characteristics were calculated under these assumptions. The results obtained show that the frequency of P680 excitations at low light intensities becomes as high as that at saturating light provided that the rate of parasitic reduction is comparable with the rate of the slowest reaction in the cycle of the water- oxidizing complex conversions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号